2013 m. kovo 20 d., trečiadienis

Motoroleriu bėdos. . . 


Kiek paskaiciau forumus ir pastebejau, kad dazna problema "su kojele sunkiai , o su starteriu isvis nesikuria motoras" , speliojimu yra visokiu, ar kompresijos nera ar panasiai, ir klausimas daug kam kyla "ar gali pats pasikeisti ziedus ar net visa grupe", ir daug kas atsako, kad apie tai reikia ismanyti... , -visai ne!, man paciam buvo toks dalykas, gavau motoroleri (Suzuki Address v100 . 9 KW variklis, 100cc , gamyklinis rinkimas...)  ir jo grupe buvo visiskai sudrosta, o as dar buvau ant technikos tokios VISISKAI "zalias", nu, bet ka daryt, vaziuot norejau , tai pats ir nagus kisau ten. Issiardziau viska, nusiėmiau senaja grupe, viska ir nusipirkau nauja 50cc grupe, pakeiciau , sudejau viskai vietas ir burbt , uzsivedė is pirmo karto :) .
Vasara ir pas mane atkeliavo tokia bėda, kad su starteriu neuzkuria motoro, o su kojele kuriasi, tj. -su starteriu kuriant nesikuria del to, kad neuztenko prasukimo momento, o su kojele kai duosi stipresti ir staigesni momenta iskart kabina, kai jau isiles variklis uzsiveda ir su starteriu :), bet jei net pasiles variklis su starteriu nesikuria, tai jau reiktu reguliuoti degima... Kurimas su el.starteriu ir kojele , visiskai skiriasi...
Pats geriausias variantas, jei sunkiai kuriasi, ar keistai dirba variklis, tada reiktu ji visa perinkti, nebutina ten nieko keisti, tiesiog perrinki tereikia ir dazniausiai viskas buna gerai :)

Taigi, sėkmės jums su motoroleriais ;)

2013 m. vasario 12 d., antradienis


Keturtakčio variklio veikimas ir privalumai

1876 metais išrastas keturtaktis variklis, dar kitaip vadintas Otto variklis, pavadintas Nikolaus August Otto garbei. Šis variklis buvo varomas benzinu. Tačiau norint maksimaliai sumažinti kuro sanaudas, 1893 metais buvo išrastas dyzelinis keturių taktų variklis. Jo išradėjas Rudolph Diesel. Šiame straipsnyje kalbėsime apie šiek tiek paprastesnį Otto variklį.
Keturtakčio variklio sudedamosios dalys:
1. Vožtuvo spyruoklė
2. Išmetimo vožtuvas
3. Cilindro galva
4. Aušinimo skystis
5. Stumoklis
6. Karteris
7. Alkuninis velenas
8. Švaistiklis
9. Cilindras
10. Degimo kamera
11. Įsiurbimo vožtuvas
12. Įsiurbimo anga
13. Kumštelis
14. Velenėlis
15. Žvakė
16. Paskirstymo grandinė (jos paveikslėlyje nesimato)
Veikimo principas:
1. Įsiurbimas. Stumoklis leisdamasis cilindre sumažina slėgį. Dėl susidariusių slėgių skirtimų per atsidariusį įsiurbimo vožtuvą įsiurbiamas šviežias mišinys.
2. Suspaudimas. Įsiurbimo ir išmetimo vožtuvai uždaryti. Stumoklis kyla į viršų suslėgdamas isiurbtą mišinį degimo kameroje.
3. Sprogimas. Stumokliui beveik pasiekus mirties tašką, žvakės kibirkštimi uždegamas mišinys. Įvykes sprogimas nustumia stumoklį žemyn.
4. Išmetimas. Iš inercijos nustumtas apačion stumoklis vėl kyla į viršų. Tuo tarpu atsidaro išmetimo vožtuvas ir per išmetimo angą pašalinamas sudegęs mišinys. Po to viskas prasideda iš naujo.
Privalumai ir trūkumai lyginant su dvitakčiu varikliu:
Privalumai: Keturtakčiai varikliai generuoja žymiai didesnį sukimo momentą, ypač žemų sūkių diapazone, suvartoja žymiai mažiau degalų, taipogi lėčiau dyla dėl geresnio tepimo. Be abejo, keturtakčių variklių garsas daug sodresnis ir žemesnis.
Trūkumai: Keturtaktis variklis turi daug besisukančių ir kitaip judančių detalių, jį daug sudėtingiau prižiūrėti bei remontuoti, tokie varikliai yra brangesni.
Šiomis dienomis, kai degalų sanaudos, garsas, kvapas ir emisijos yra svarbiausi aspektai pasirenkant variklį, pasaulyje karaliauja keturtakčiai. Beveik visose mašinose ir sunkiojoje technikoje montuojami dyzeliniai arba benziniai keturtakčiai varikliai. Nors ir generuoja šie varikliai dvigubai mažiau galios lyginant su dvitakčiais ir turi daugiau judančių detalių, jų tarnavimo laikas žymiai ilgesnis. Taip yra dėl itin geros tepimo sistemos. Tepalas (dažniausiai) pompelės pagalba yra purškiamas ir slėgio pagalba itin gerai padengia metalinius paviršius. Tačiau sugedus tokiam varikliui, turėsite galvos skausmą. Keturtakčio remontas yra žymiai brangesnis ir sudėtingesnis lyginant su dvitakčiu.
Dar viena priežastis, kodėl šio tipo varikliai tokie populiarus, tai galimybė nesunkiai juos tobulinti, dar kitaip liaudiškai tariant “tiuninguoti”. Labai dažnai prie tokių variklių (ypač mašinose) galite išvysti sraigės formos metalo gabalą. Tai turbo kompresorius (turbina), kuri varoma iš variklio išmetamomis dujomis. Turbo kompresorius ora ar mišinį suspaudžia ir tik tada įpučia į cilindrą. Pakeitus kuro padavimo parametrus galima išgauti daug daugiau galios.

Kaip veikia dvitaktis variklis ir jo privalumai

Dabar pasaulyje plačiai naudojami du visiems gerai žinomi variklių tipai – dvitaktis ir keturtaktis. Jau labai senai, maždaug 1879 metais sukurtas dvitaktis variklis dėl nesudėtingos savo konstrukcijos ir didelės galios išsikovojo vietą po saule. Šiame straipsnyje kažkam trumpai priminsime, o kažką supažindinsime su jo konstrukcija ir veikimo principu.

Dvitakčio variklio sudedamosios dalys:

1. Stūmoklis, žiedai; 2. Alkūninis velenas; 3. Švaistiklis; 4. Cilindras; 5. Degimo kamera; 6. Žvakė; 7. Cilindro galvutė; 8. Įsiurbimo anga; 9. Įsiurbimo anga (2); 10. Išmetimo anga; 11. Karteris.

Veikimo principas:

1.Stūmoklis kildamas cilindre suspaudžia degų mišinį, žvakės kibirkštis jį užsidega, mišinys sprogsta ir stumia stūmoklį žemyn. Tuo metu, kai stūmoklis cilindre pakilęs į viršutinį tašką, per įsiurbimo angą į variklio karterį plūsteli šviežia kuro mišinio porcija. Stūmokliui leidžiantis per išmetimo angą pašalinamos jau sudegusios dujos.
2. Stūmoklis leisdamasis žemyn sudaro spaudimą karteryje, todėl jame esanti šviežia kuro mišinio porcija per antrą įsiurbimo angą įstumiama į degimo kamerą cilindre. Toliau stūmoklis kyla į viršų suspausdamas naują mišinį ir ciklas kartojasi.
Pastaba: Išmetimo anga cilindre yra išsidėsčiusi aukščiau už įsiurbimo angą.
Neatsiejamas dvitakčio variklio komponentas, kurio dėka variklis veikia sklandžiai – rezonansinis išmetimas. Keisto, pūslės formą primenančio išmetimo bakelio pagalba dalis šviežio mišinio, patekusio į išmetimo angą stūmokliui besileidžiant, sugrąžinama atgal į degimo kamerą.
Esminis skirtumas tarp dvitakčio ir keturtakčio variklio – tai tepimo sistema. Dvitaktis variklis tepalą gauna kartu su kuru.
Šiandien, dėl paprastesnės ir lengvesnės savo konstrukcijos, dviejų taktų varikliai montuojami įvairioje aplinkos darbų technikoje, tokioje kaip – benzininiai pjūklai, žoliapjovės, krūmapjovės ir kita sodo-miško priežiūros technika. Dėl sąlyginai mažo svorio ir didelės galios statomas į krosui skirtus motociklus, mopedus, radijo bangomis valdomus modeliukus ir t.t.
Dvitaktis variklis turi 3 esminius bruožus, kurie jį tam tikrais atvejais padaro pranašesnį už keturių taktų variklį:
  • 1.Dvitakčiai varikliai neturi vožtuvų, kitų mechaninių paskirstymo dalių, dėl to jų konstrukcija paprastesnė o svoris mažesnis.
  • 2.Dvitaktis variklis yra žymiai galingesnis už to paties darbinio tūrio keturtaktį variklį.
  • 3.Dvitakčiai varikliai gali veikti bet kokioje pasvirimo padėtyje, o tuo tarpu apvertus standartinį keturtaktį variklį jo karteryje esantis tepalas gali pradėti sunktis ir sutriks variklio tepimo sistema.
Šie keli pranašumai padaro variklį paprastesniu, lengvesniu ir pigesniu. Tačiau ateityje mums greičiausiai neteks išvysti automobilio ar didesnio motociklo su dvitakčiu varikliu dėl kelių jo trūkumų.
Dvitakčiai varikliai nėra ekonomiški, nes mišinio įsiurbimo metu būna atvira ir išmetimo anga, per kurią dalis nesudegusio mišinio išstumiama lauk. Antra priežastis, dėl kurios šie varikliai nėra populiarūs daug laiko turinčioje dirbti technikoje – trumpesnis variklio resursas. Dvitaktis variklis su mažesniu taktų skaičiumi atlieka dvigubai daugiau darbo už keturtaktį, todėl ir dyla greičiau. Trečia – į degimo kamerą kartu su kuru patenkantis tepalas dega ir išmetamos dujos stipriau teršia aplinką. Ir ketvirta – dvitakčio variklio kartu su išmetimo rezonatoriumi skleidžiamas garsas nėra malonus ausiai.

2013 m. vasario 11 d., pirmadienis

Kaip atsukti sankabos bugną

Daugeliui geli padėti atsukti kaip šiame video  [movie=youtube]http://www.youtube.com/watch?v=gxphUXeTwRY[/movie]

, tačiau tai gali irgi nepadėti. Tada reikėtų pasiimti kokį nors kaltą kaip pvz:        [img]http://pirkis.lt/images/upload/2008/01/image033kaltas.jpg[/img] ir su juo kalti prie varžto pabaigos. Tik prieš tai geriausia kam nors atsisėsti ant moto ir užspausti stabdžius.
[b]Blogos pasekmės:[/b] su kaltu dažniausiai sugadinsite varžtą, tačiau galėsite atsukti ir jau kitu kartu bus lengviau.

2013 m. vasario 10 d., sekmadienis


Mikuni Motorcycle Carburetor Theory 101
Motorcycle carburetors look very complex, but with a little theory, you can tune your bike for maximum performance. All carburetors work under the basic principle of atmospheric pressure. Atmospheric pressure is a powerful force which exerts pressure on everything. It varies slightly but is generally considered to be 15 pounds per square inch (PSI). This means that atmospheric pressure is pressing on everything at 15 PSI. By varying the atmospheric pressure inside the engine and carburetor, we can change the pressure and make fuel and air flow.
Atmospheric pressure will force high pressure to low pressure. As the piston on a two stroke engine goes up (or goes down on a four stroke engine), a low pressure is formed inside the crankcase (above the piston on a four stroke). This low pressure also causes a low pressure inside the carburetor. Since the pressure is higher outside the engine and carburetor, air will rush inside the carburetor and engine until the pressure is equalized. The moving air going through the carburetor will pick up fuel and mix with the air.
Inside a carburetor is a venturi, fig 1. The venturi is a restriction inside the carburetor that forces air to speed up to get through. A river that suddenly narrows can be used to illustrate what happens inside a carb. The water in the river speeds up as it gets near the narrowed shores and will get faster if the river narrows even more. The same thing happens inside the carburetor. The air that is speeding up will cause atmospheric pressure to drop inside the carburetor. The faster the air moves, the lower the pressure inside the carburetor.
FIG 1
Most motorcycle carburetor circuits are governed by throttle position and not by engine speed.There are five main metering systems inside most motorcycle carburetors. These metering circuits overlap each other and they are:
* pilot circuit
* throttle valve
* needle jet and jet needle
* main jet
* choke circuit
The pilot circuit has two adjustable parts, fig 2. The pilot air screw and pilot jet. The air screw can be located either near the back side of the carburetor or near the front of the carburetor. If the screw is located near the back, it regulates how much air enters the circuit. If the screw is turned in, it reduces the amount of air and richens the mixture. If it is turned out, it opens the passage more and allows more air into the circuit which results in a lean mixture. If the screw is located near the front, it regulated fuel. The mixture will be leaner if it is screwed in and richer if screwed out. If the air screw has to be turned more than 2 turns out for best idling, the next smaller size pilot jet will be needed.
FIG 2
The pilot jet is the part which supplies most of the fuel at low throttle openings. It has a small hole in it which restricts fuel flow though it. Both the pilot air screw and pilot jet affects carburetion from idle to around 1/4 throttle.
The slide valve affects carburetion between 1/8 thru 1/2 throttle. It especially affects it between 1/8 and 1/4 and has a lesser affect up to 1/2. The slides come in various sizes and the size is determined by how much is cutaway from the backside of it, fig 3. The larger the cutaway, the leaner the mixture (since more air is allowed through it) and the smaller the cutaway, the richer the mixture will be. Throttle valves have numbers on them that explains how much the cutaway is. If there is a 3 stamped into the slide, it has a 3.0mm cutaway, while a 1 will have a 1.0mm cutaway (which will be richer than a 3).
FIG 3
The jet needle and needle jet affects carburetion from 1/4 thru 3/4 throttle. The jet needle is a long tapered rod that controls how much fuel can be drawn into the carburetor venturi. The thinner the taper, the richer the mixture. The thicker the taper, the leaner the mixture since the thicker taper will not allow as much fuel into the venturi as a leaner one. The tapers are designed very precisely to give different mixtures at different throttle openings. Jet needles have grooves cut into the top. A clip goes into one of these grooves and holds it from falling or moving from the slide. The clip position can be changed to make an engine run richer or leaner, fig 4. If the engine needs to run leaner, the clip would be moved higher. This will drop the needle farther down into the needle jet and cause less fuel to flow past it. If the clip is lowered, the jet needle is raised and the mixture will be richer.
The needle jet is where the jet needle slides into. Depending on the inside diameter of the needle jet, it will affect the jet needle. The needle jet and jet needle work together to control the fuel flow between the 1/8 thru 3/4 range. Most of the tuning for this range is done to the jet needle, and not the needle jet.
FIG 4

The main jet controls fuel flow from 3/4 thru full throttle, fig 5. Once the throttle is opened far enough, the jet needle is pulled high enough out of the needle jet and the size of the hole in the main jet begins to regulate fuel flow. Main jets have different size holes in them and the bigger the hole, the more fuel that will flow (and the richer the mixture). The higher the number on the main jet, the more fuel that can flow through it and the richer the mixture.
FIG 5
The choke system is used to start cold engines. Since the fuel in a cold engine is sticking to the cylinder walls due to condensation, the mixture is too lean for the engine to start. The choke system will add fuel to the engine to compensate for the fuel that is stuck to the cylinder walls. Once the engine is warmed up, condensation is not a problem, and the choke is not needed.
The air/fuel mixture must be changes to meet the demands of the needs of the engine. The ideal air/fuel ratio is 14.7 grams of air to 1 gram of fuel. This ideal ratio is only achieved for a very short period while the engine is running. Due to the incomplete vaporization of fuel at slow speeds or the additional fuel required at high speeds, the actual operational air/fuel ratio is usually richer. Figure 6 shows the actual air/fuel ratio for any given throttle opening.
FIG 6
Carburetor Jetting Troubleshooting
Carburetor troubleshooting is simple once the basic principles are known. The first step is to find where the engine is running poorly, fig 7It must be remembered that carburetor jetting is determined by the throttle position, not engine speed. If the engine is having troubles at low rpm (idle to 1/4 throttle), the pilot system or slide valve is the likely problem. If the engine has problems between 1/4 and 3/4 throttle, the jet needle and needle jet (most likely the jet needle) is likely the problem. If the engine is running poorly at 3/4 to full throttle, the main jet is the likely problem.
FIG 7
While jetting carburetors, place a piece of tape on the throttle housing. Place another piece of tape on the throttle grip and draw a line (while the throttle is at idle) straight across from one piece of tape to the other. When these two lines are lined up, the engine will be idling. Now open the throttle to full throttle and draw another line directly across from it on the throttle housing. At this point, there should be two lines on the throttle housing, and one on the throttle grip. Now find the half-way point between both of the lines on the throttle housing. Make a mark and this will show when the throttle is at half throttle. Divide the spaces up even again until idle, 1/4, 1/2, 3/4, and full throttle positions are known. These lines will be used to quickly find the exact throttle opening while jetting.
Clean the air filter and warm the bike up. Accelerate through the gears until the throttle is at full throttle (a slight uphill is the best place for this). After a few seconds of full throttle running, quickly pull in the clutch and stop the engine (Do not allow the engine to idle or coast to a stop). Remove the spark plug and look at its color. It should be a light tan color (for more info on reading spark plugs click here). If it's white, the air/fuel mixture is too lean and a bigger main jet will have to be installed. If it's black or dark brown, the air/fuel mixture is too rich and a smaller main jet will have to be installed. While changing jets, change them one size at a time, test run after each change, and look at the plug color after each run.
After the main jet has been set, run the bike at half throttle and check the plug color. If it's white, lower the clip on the jet needle to richen the air/fuel mixture. If it's dark brown or black, raise the clip to lean the air/fuel mixture.
The pilot circuit can be adjusted while the bike is idling and then test run. If the engine is running poorly just off of idle, the pilot jet screw can be turned in or out to change the air-fuel mixture. If the screw is in the back of the carburetor, screwing it out will lean the mixture while screwing it in will richen it. If the adjustment screw is in the front of the carburetor, it will be the opposite. If turning the screw between one and two and a half doesn't have any affect, the pilot jet will have to be replaced with either a larger or smaller one. While adjusting the pilot screw, turn it 1/4 turn at a time and test run the bike between adjustments. Adjust the pilot circuit until the motorcycle runs cleanly off of idle with no hesitations or bogs.

Altitude, Humidy, and Air Temperature
Once the jetting is set and the bike is running good, there are many factors that will change the performane of the engine. Altitude, air temperature, and humidity are big factors that will affect how an engine will run. Air density increases as air gets colder. This means that there are more oxygen molecules in the same space when the air is cold. When the temperature drops, the engine will run leaner and more fuel will have to be added to compensate. When the air temperature gets warmer, the engine will run richer and less fuel will be needed. An engine that is jetted at 32deg Fahrenheit may run poorly when the temperature reaches 90deg Fahrenheit.
Altitude affects jetting since there are less air molecules as altitude increases. A bike that runs good at sea level will run rich at 10,000 ft due to the thinner air.
Humidity is how much moister is in the air. As humidity increases, jetting will be richer. A bike that runs fins in the mornings dry air may run rich as the day goes on and the humidity increases.
Correction factors are sometimes used to find the correct carburetor settings for changing temperatures and altitudes. The chart in fig 8, shows a typical correction factor chart. To use this chart, jet the carburetor and write down the pilot and main jet sizes. Determine the correct air temperature and follow the chart over to the right until the correct elevation is found. Move straight down from this point until the correct correction factor is found. Using fig 8 as an example, the air temperature is 95deg Fahrenheit and the altitude is 3200 ft. The correction factor will be 0.92. To find out the correction main and pilot jets, multiple the correction factor and each jet size. A main jet size of 350 would be multiplied by 0.92 and the new main jet size would be a 322. A pilot jet size of 40 would be multiplied by 0.92 and the pilot jet size would be 36.8.
FIG 8
Correction factors can also be used to find the correct settings for the needle jet, jet needle, and air screw. Use the chart from fig 9 and determine the correction factor. Then use the table below to determine what to do with the needle jet, jet needle, and air screw.
Needle Jet/Jet Needle/Air Screw Correction Chart

Correction factor
1.04 or above
1.04-1.00
1.00-0.96
0.96-0.92
0.92 or below
Needle jet
Two sizes larger
One size larger
Same size
One size smaller
Two sizes smaller
Jet needle setting
Lower clip position
Same
Same
Same
Raise clip one position
Air screw opening
One turn in
1/2 turn in
Same
1/2 turn out
One turn out

FIG 9
 
Projektas "Nesiojama kolonele" Kolonele padaryta, is senu koloneliu , nuo senos rusiskos garso technikos...
Idetas savadarbis 50w stiprintuvas 50x2 . Stprintuve yra tebro blokas, trys potenceometrai, jais galima reguliot  garsa , bass'us , balanca. Dar yra idetas originalus garso filtras...







 Garsi filtras.













Groja labai garsiai ir gerai. Akumuliatorius laiko pakankamai ilgai.

Suzuki Address v100

Sugalvojau padaryti toki projekta... Gavau sena Suzuki Address v100 . 50cc motoroleri. Jis buvo nevaziuojantis. Padariau kapitalini, pakeiciau gtupe , ipilti nauji pusiau sintetiniai Prancūziški tepalai ir perrinkau visa iki kekvienos daleles.
 Is pradziu buvo taip...



 Ideta nauja 50cc Sport klases grupe.
 Perinktas remas, nuslifuotas, ir perdazytas.
 Nuslifuoti ir nudazyti ratai.

 Pradetas surinkineti remas, uzdeta "pravodke" .


 Is montaziniu putu formuojama forma, paskui ja nuemus bus padaryta pati plastmase is epoksidines dervos ir stiklo audinio.
 Uzdetas visas "priekis" .

 Prie bloko pritvirtintas "peg'as" . Stunt ridingui...


Na, proejektukas dar nebaigtas, bet greitu metu baiginesiu. Iki pilnos laimes betruksta padaryti plastmase, susitvarkyt vusus plastikus ir perdazyt, susidet visas dalis...  2013-02-10 .